Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics.

نویسندگان

  • Ya Yang
  • Hulin Zhang
  • Yan Liu
  • Zong-Hong Lin
  • Sangmin Lee
  • Ziyin Lin
  • Ching Ping Wong
  • Zhong Lin Wang
چکیده

Silicon (Si)-based solar cell is by far the most established solar cell technology. The surface of a Si solar cell is usually covered by a layer of transparent material to protect the device from corrosion, contamination and mechanical damage. Here, we replaced this protection layer by a thin layer film of polydimethysiloxane nanowires. Based on this layer and using the conductive layer on the surface of the wavy Si, we have fabricated a triboelectric nanogenerator (TENG). The solar cell and the TENG form a hybrid energy cell for simultaneously harvesting solar and mechanical energies. The hybrid energy cell can be directly used for self-powered electrodegradation of rhodamine B, where the degradation percentage is up to 98% in 10 min. Moreover, the produced energy can also be stored in the Li-ion batteries for driving some personal electronics such as a red laser diode and a commercial cell phone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation.

In general, methyl orange (MO) can be degraded by an electrocatalytic oxidation process driven by a power source due to the generation of superoxidative hydroxyl radical on the anode. Here, we report a hybrid energy cell that is used for a self-powered electrocatalytic process for the degradation of MO without using an external power source. The hybrid energy cell can simultaneously or individu...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application

This paper presents a novel multi-port DC/DC converter which is suitable to be used as the interface of hybrid renewable energy systems. The converter contains three unidirectional power flow ports which two of them are input ports and are connected to two independent energy sources while the third one is the output port that feeds a standalone load. Furthermore, the proposed converter contains...

متن کامل

Quantitative self-powered electrochromic biosensors† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04469g Click here for additional data file.

Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simp...

متن کامل

Quantitative self-powered electrochromic biosensors.

Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2013